Tribological behavior and mechanism of NiCrBSi–Y$_2$O$_3$ composite coatings

Bin CAI, Ye-fa TAN, Hua TAN, Qi-feng JING, Zhong-wei ZHANG
College of Field Engineering, PLA University of Science and Technology, Nanjing 210007, China
Received 5 June 2012; accepted 5 December 2012

Abstract: The NiCrBSi–Y$_2$O$_3$ composite coatings were prepared on the surface of 45 carbon steel by plasma spray, the microstructure and tribological properties of the coatings were investigated. The results show that the NiCrBSi–Y$_2$O$_3$ composite coatings are mainly composed of γ-Ni, CrB, Cr$_7$C$_3$ and Y$_2$O$_3$. With addition of Y$_2$O$_3$, hard phases such as CrB, Cr$_7$C$_3$ emerge in composite coating, and the density of the composite coatings also increases. The NiCrBSi–0.5Y$_2$O$_3$ composite coating presents excellent tribological properties. Its friction coefficient is 0.175, which is about 37% of that of the pure NiCrBSi coating. The mass wear loss is 1.2 mg, which is reduced by 43% compared with the pure NiCrBSi coating. When the loads are 6–10 N, the NiCrBSi–0.5Y$_2$O$_3$ composite coating suffers from slight wear and the wear mechanisms are mainly adhesive wear accompany with slight micro-cutting wear and micro-fracture wear. As the load increases to 12 N, the wear mechanisms are adhesive wear and severe micro-cutting wear.

Key words: plasma spray; composite coating; NiCrBSi; Y$_2$O$_3$; friction; wear

1 Introduction

The parts used in metallurgical and construction machinery usually suffer from severe friction and wear, the anti-wear alloy coatings are widely applied to improving their wear resistance and prolong their service lives [1,2]. However, the values of friction coefficients of the anti-wear alloy coatings are usually high, thus leading to high energy consumption [3,4]. As the mechanical equipments develop, the machine parts are getting more demands on anti-friction property. So, it becomes research hotspot to develope the surface coatings with both property of anti-wear and low friction coefficients.

Rare earth oxides such as CeO$_2$ and La$_2$O$_3$ are commonly used to improve mechanical property and wear resistance of surface coatings. For example, the microhardness and wear resistance of the laser clad TiC$_y$/Ni-base alloy composite coatings could be improved by adding 0.5% La$_2$O$_3$ (in mass fraction), and friction coefficient of the composite coatings was also reduced [5]. With addition of 1.5% Sm$_2$O$_3$ (in mass fraction), the microstructure of the laser cladded Ni-based alloy coating could be refined and the microhardness increased from HV$_{0.2}$ 484 to HV$_{0.2}$ 712. The wear rate of the composite coatings was reduced by 50% compared with the pure Ni-based alloy coatings [6]. WANG et al [7] found that the microhardness of the spray welded Ni-based alloy coating decreased with addition of 4%La$_2$O$_3$ (in mass fraction), and its mass wear loss was reduced by 20% compared with the coating without La$_2$O$_3$. That is because La$_2$O$_3$ can improve the uniformity of the coating microstructure and its resistance to micro-cutting. It can be concluded that rare earths not only improve wear resistance but also have the effects of anti-friction.

Wear resistance of surface coatings with rare earths increases because the microstructure of surface coatings is refined and purified, so their hardness and fracture toughness increase [8–10]. However, there are different views on the anti-friction mechanisms of rare earths in surface coatings. For example, ZHANG et al [11] considered that rare earth oxides have the character as solid lubricant. HAN and LU [12] attributed the anti-friction effects of CeO$_2$ not only to its hexagonal structure, but also to the reduction of micro-cutting force for the improved density of the composite coatings. HUANG et al [13] reckoned that rare earth refined the coating structure and improved the fracture toughness of the coating, so reduced the friction coefficients.

Researchers on anti-wear and anti-friction effects of
rare earths are mainly focused on coatings prepared by fused cladding technology such as laser cladding and induction cladding, but the mechanisms of rare earths in the plasma spray technology are different from those in the fused cladding technology, which need to be researched. The temperature of the substrate is low in plasma spray process and the solidification speed of the sprayed particles is higher than 10³ °C/s [14]. In addition, the Y₂O₃ particles may act as the better heterogeneous nucleation than La₂O₃ and CeO₂ particles, which may improve the uniformity of the hard phase and the microhardness of the coatings [15]. In this work, the NiCrBSi−Y₂O₃ composite coatings were prepared on the surface of 45 carbon steel by plasma spray technology, the microstructure, microhardness and tribological properties of the composite coatings were investigated to provide theory basis and experimental data for application of Y₂O₃ in the plasma spray coatings.

2 Experimental

2.1 Specimen preparation

The NiCrBSi−Y₂O₃ composite materials are composed of NiCrBSi powders and Y₂O₃ powders. The chemical composition of the NiCrBSi powders was 16Cr, 3.1B, 4.3Si, 4Fe, 0.65C and balance Ni (mass fraction, %) and its particle sizes were in the range of 55−128 μm. The purity of Y₂O₃ powders with sizes of 15−45 μm was 99.5%. The composite spray powders were made by the mixture of the Ni-based alloy powders and the Y₂O₃ powders in a ball mill equipment for 1 h.

The 45 carbon steel was chosen as the substrate, and was previously treated by surface degrease and sand spraying. The composite powders were respectively sprayed on the surface of 45 carbon steel by the plasma spray equipment of DH1080. The spray technological parameters were electric current of 600 A, voltage of 40 V and spray distance of 80 mm. The thickness of the spray coating was 400 μm with surface roughness of 0.5 μm after being ground by diamond wheel.

2.2 Tribological tests

The tribological tests were carried out in a ball-on-disc tribometer of HT-500. The upper specimen was GCr15 steel ball with the diameter of 4 mm and the surface roughness of 0.05 μm. The down ones were the composite coatings. Tribological tests were conducted at the speed of 0.1 m/s in room temperature, normal load was 6−12 N, and sliding distance was 360 m. The mass wear losses of the specimens were measured by the balance of TG328A with accuracy of 0.1 mg.

2.3 Surface analysis

The X-ray diffraction (XRD) of the composite coatings was performed on a D/max 2500 X-ray diffractometer. Porosity of the coatings was tested by the DM−3000 metallography analysis software. The microhardness of the coatings was measured using the DHV−1000 sclerometer under the load of 4.92 N with a dwell time of 15 s. The morphologies of the microstructure and the worn surface of the composite coatings were observed by the scanning electron microscope (SEM) of QUANTA 200. Chemical composition of the composite coatings was analyzed with the energy-dispersive analysis of X-ray (EDAX).

3 Results and discussion

3.1 Microstructure of NiCrBSi−Y₂O₃ composite coatings

The XRD patterns of the NiCrBSi−Y₂O₃ composite coatings are shown in Fig. 1. It can be found that the NiCrBSi−Y₂O₃ composite coatings are mainly composed of γ-Ni, CrB, Cr₇C₃ and Y₂O₃. Compared with the pure NiCrBSi coating, there are some new phases such as CrB and Cr₇C₃ emerge in the NiCrBSi−0.5Y₂O₃ composite coating. During the spraying process, the NiCrBSi powders and the Y₂O₃ powders were heated and fused by the plasma flame, and then the fused particles quickly solidified on the substrate of the carbon steel. It was reported that element C can promote the decomposition of rare earth oxides into rare earth elements during solidification process of the fused particles [16], so Y₂O₃ may react with C to produce Y:

\[Y_2O_3 + 3C = 2Y + 3CO \] (1)

The solid solubility of Y in NiCrBSi is low because the large radius of Y is 0.18 nm [17]. This may account for the segregation of Y at the dislocation and grain boundary area of the NiCrBSi coating, which leads to...
to distortion area in the coating [18]. Y has a strong adsorptive action to elements C and B [19], so it causes segregation of elements C and B in the distortion area. As the concentrations of elements C and B increase to certain degree at the distortion area, CrB and Cr7C3 may precipitate. So, the diffraction peaks of CrB and Cr7C3 emerge in the NiCrBSi−0.5Y2O3 composite coating, which indicates that Y2O3 may promote the precipitation of CrB and Cr7C3 in the composite coatings. The hard phases of CrB and Cr7C3 can improve the wear resistance of the composite coatings.

As Y2O3 increases to 1.0% (in mass fraction), CrB in the composite coating increases compared with the NiCrBSi−0.5Y2O3 composite coating. It also shows a little Y2O3 in the composite coating which indicates some unreacted Y2O3 particles retained in the composite coating. The CrB content is improved due to the heterogeneous nucleation effects of the unreacted Y2O3 particles.

When Y2O3 is 2.0%, the new phase of NiSi emerges in the composite coating. The unreacted Y2O3 particles retained in the composite coating increase as Y2O3 content increases, which enhances the heterogeneous nucleation effect and promotes the precipitation of brittle composites, such as NiSi. Therefore, the brittleness of the composite coating increases. It can be concluded that the optimum addition of 0.5% Y2O3 may improve the hard phases of CrB and Cr7C3 in the composite coating, but excess Y2O3 may induce brittle phases such as NiSi in the composite coatings and result in higher brittleness.

Figure 2 shows the metallographic pictures of the pure NiCrBSi coating and the NiCrBSi−0.5Y2O3 composite coating. The grain size of the latter is smaller than that of the former. This indicates that Y2O3 may refine the grain size of the NiCrBSi coating.

Figure 3 shows the porosity of the NiCrBSi−Y2O3 composite coatings as a function of Y2O3 content. The porosity initially decreases and then increases with increasing Y2O3 content. It is observed that the porosity of the composite coatings is much lower than that of the pure NiCrBSi coating (porosity of 2.96%). It is 0.92% when the Y2O3 content is 0.5%, and then reaches the lowest value (about 0.67%) as the Y2O3 content increases to 1.0–1.5%. It is well known that porosity of the sprayed coatings is closely related to the deformation degree of the fused particles. It was reported that the deformation degree of the fused particles during plasma spray can be demonstrated as Eq. (2) [20]:

$$\frac{D}{h} = \frac{\rho dv^2}{2\sigma} + 3$$

where σ is the surface tension of the fused particles; ρ is density of the particles; d is the size of the particles; D/h is the ratio of size to height of the particles on the substrate. The higher the value of D/h is, the more flat the particles become.

Rare earths can improve the wettability of the NiCrBSi particles due to their high activity [21], so σ of the NiCrBSi powders decreases with addition of Y2O3, which means the value of D/h increases. Figure 4 shows the sprayed particles morphology of the pure NiCrBSi powders and the NiCrBSi−0.5Y2O3 composite powders. The spread particles in the composite powders with Y2O3 (as shown in Fig. 4(b)) are larger than those in the pure NiCrBSi powders (as shown in Fig. 4(a)), which indicates the fused particles of the NiCrBSi−Y2O3
composite coatings are more flat and compact than those of the coatings without Y\textsubscript{2}O\textsubscript{3}. This may account for the decreasing porosity of the NiCrBSi–Y\textsubscript{2}O\textsubscript{3} composite coatings.

Fig. 4 OM images showing sprayed particles morphology of pure NiCrBSi powder (a) and NiCrBSi–0.5Y\textsubscript{2}O\textsubscript{3} composite powders (b)

However, the porosity of the composite coatings increases to 1.16% when the Y\textsubscript{2}O\textsubscript{3} content is 2.0% because the unreacted Y\textsubscript{2}O\textsubscript{3} particles may induce defects such as voids and pores in the composite coating.

Microhardness of the NiCrBSi–Y\textsubscript{2}O\textsubscript{3} composite coatings as a function of Y\textsubscript{2}O\textsubscript{3} content is shown in Fig. 5. The average microhardness of the NiCrBSi–Y\textsubscript{2}O\textsubscript{3} composite coatings is HV 700, which is found to dramatically increase compared with the pure NiCrBSi coating (HV 586). It can be attributed to the following reasons: 1) Plastic deformation of the composite coatings after microhardness test decreases because of the increased density due to the decrease of porosity with addition of Y\textsubscript{2}O\textsubscript{3}; 2) The hard phase precipitates such as CrB and Cr\textsubscript{7}C\textsubscript{3} are improved by Y\textsubscript{2}O\textsubscript{3}, which can increase the microhardness of the composite coatings.

3.2 Effects of Y\textsubscript{2}O\textsubscript{3} content on tribological behavior and mechanisms of composite coatings

The friction coefficients of the NiCrBSi–Y\textsubscript{2}O\textsubscript{3} composite coatings with the increasing Y\textsubscript{2}O\textsubscript{3} content are shown in Fig. 6. The friction coefficients initially decrease and then increase and lastly remain unchanged. The friction coefficient of NiCrBSi–0.5Y\textsubscript{2}O\textsubscript{3} composite coating (0.175) is much lower than that of the pure NiCrBSi coating (0.47). As the Y\textsubscript{2}O\textsubscript{3} content increases to 1.0%, the friction coefficient is 0.36, which is higher than that of the NiCrBSi–0.5Y\textsubscript{2}O\textsubscript{3} composite coating. The friction coefficient remains at 0.37 when Y\textsubscript{2}O\textsubscript{3} is 2.0%.

Figure 7 shows the wear mass loss of the NiCrBSi–Y\textsubscript{2}O\textsubscript{3} composite coatings as a function of Y\textsubscript{2}O\textsubscript{3} content. The wear mass losses of the composite coatings firstly decrease and then increase. The wear mass loss of the NiCrBSi–0.5Y\textsubscript{2}O\textsubscript{3} composite coating is 1.2 mg, reduced by 43% compared with the pure NiCrBSi coating (2.1 mg). That is because the microhardness of the former is higher than the latter. The mass loss wear of the NiCrBSi–1.0Y\textsubscript{2}O\textsubscript{3} composite coating is the lowest (0.9 mg). When Y\textsubscript{2}O\textsubscript{3} exceeds 1.0%, the wear mass losses of the composite coatings increase. For example, the wear mass loss of the NiCrBSi–2.0Y\textsubscript{2}O\textsubscript{3} is 1.6 mg.

Figure 8 shows the worn surface of the pure NiCrBSi coating with its EDAX spectrum. Some worn furrows emerge on the worn surface, as shown in Fig. 8(a), because the solid welding nodes in the contact
Fig. 7 Wear mass loss of NiCrBSi–Y₂O₃ composite coatings under load of 10 N

Fig. 8 SEM image showing worn surface morphology (a) and EDAX spectrum (b) of pure NiCrBSi coating

The friction coefficients and wear mass loss of the NiCrBSi–0.5Y₂O₃ composite coating are greatly reduced compared with the pure NiCrBSi coating. Figure 9 shows the worn surface of the NiCrBSi–0.5Y₂O₃ composite coating and its EDAX spectrums. Figure 9(a) shows that a dark grey film emerges on the worn surface. The chemical composition of the film is 2.42C, 9.88O, 3.18Si, 15.99Cr, 7.36Fe and 61.18Ni (mass fraction, %) (Fig. 9(b)), which indicates Fe₂O₃, Fe₃O₄ and NiO in the film. The film may easily shear under the friction force and lead to greatly decrease of the shear strength at the friction interface. So, the friction coefficients of the NiCrBSi–0.5Y₂O₃ composite coating decrease. The vacancy density increases in the friction surface because of the increased temperature induced by friction heat. Then Y at the grain boundary is more apt to diffuse and segregate in the vacancies than other alloying elements for its low free energy. The segregated rare earth on the worn surface of the pure NiCrBSi coating as a result of shear damage of the solid welding nodes. The friction coefficient of the pure NiCrBSi coating is relatively high because of severe adhesive friction. In addition, the grooves on the worn surface indicate micro-cutting wear of the composite coating, so the main wear mechanisms of the pure NiCrBSi coating are abrasive wear and micro-cutting wear.

The friction coefficients and wear mass loss of the NiCrBSi–0.5Y₂O₃ composite coating are greatly reduced compared with the pure NiCrBSi coating. Figure 9 shows the worn surface of the NiCrBSi–0.5Y₂O₃ composite coating and its EDAX spectrums. Figure 9(a) shows that a dark grey film emerges on the worn surface. The chemical composition of the film is 2.42C, 9.88O, 3.18Si, 15.99Cr, 7.36Fe and 61.18Ni (mass fraction, %) (Fig. 9(b)), which indicates Fe₂O₃, Fe₃O₄ and NiO in the film. The film may easily shear under the friction force and lead to greatly decrease of the shear strength at the friction interface. So, the friction coefficients of the NiCrBSi–0.5Y₂O₃ composite coating decrease. The vacancy density increases in the friction surface because of the increased temperature induced by friction heat. Then Y at the grain boundary is more apt to diffuse and segregate in the vacancies than other alloying elements for its low free energy. The segregated rare earth on the worn surface of the pure NiCrBSi coating as a result of shear damage of the solid welding nodes. The friction coefficient of the pure NiCrBSi coating is relatively high because of severe adhesive friction. In addition, the grooves on the worn surface indicate micro-cutting wear of the composite coating, so the main wear mechanisms of the pure NiCrBSi coating are abrasive wear and micro-cutting wear.
friction surface can reduce vacancies and voids between the oxide film and the substrate, which results in the increasing combined strength of the oxide film. As a result, the complete oxide film is developed on the worn surface.

The content of element Fe on the worn surface is 7.46%, much less than that in the worn surface of the pure NiCrBSi coating. This suggests that the adhesive action is alleviated because of less GCr15 steel transferred to the worn surface. It can be concluded that the oxide film on the worn surface of the NiCrBSi–0.5Y₂O₃ composite coating can not only reduce friction coefficients, but also reduce adhesive wear. Besides, the lump wear debris are found on the worn surface of the composite coating as shown in Fig. 9(a), which indicates certain extent brittle fracture of the coating. It shows that the wear mechanisms of the NiCrBSi–0.5Y₂O₃ composite coating are mainly slight adhesive wear accompany with slight micro-fracture wear.

The wear behavior and mechanisms of the NiCrBSi–Y₂O₃ composite coatings change with the further increase of Y₂O₃ content. The worn surface of the NiCrBSi–1.0Y₂O₃ composite coating and its EDAX spectrum are shown in Fig. 10. It is obvious that many black point-like structures distribute on the smooth worn surface with little oxide film as shown in Fig. 10(a). The chemical composition of the point-like structures is 1.15% C, 9.64% O, 0.76% Si, 82.16% Cr, 1.63% Fe, 3.59% Ni and 1.08% Y (Fig. 10(b)). It shows that the point-like structures are rich in Cr, indicating that the point-like structures are mainly CrB and Cr₇C₃. These hard phases are exposed on the worn surface and support the GCr15 steel ball after the alloy matrix around the hard phases wears off during friction process. Thus the hard phases bear main load and induce great decrease in pressure on the Ni-based alloy matrix, which results in reduction of the friction heat by plastic deformation. Therefore, friction oxidation reaction of the Ni-based alloy matrix is too little to produce oxide film which can account for the increase in friction coefficient of the NiCrBSi–1.0Y₂O₃ composite coating.

The wear mass loss of the NiCrBSi–1.0Y₂O₃ composite coating is lower than that of the NiCrBSi–0.5Y₂O₃ composite coating, because the former coating is more resistant to plastic deformation than the latter due to its higher microhardness than the latter. Some micro-cracks and fracture pits emerge on the worn surface of the composite coating (Fig. 10(a)). These micro-cracks can be attributed to the stress concentration in the combine region between the hard phases and the Ni-based alloy matrix as a result of high shear force on the hard phases during friction. This suggests that the main wear mechanisms of the NiCrBSi–1.0Y₂O₃ composite coating are mainly adhesive wear and micro-fracture wear.

Figure 11 shows the worn surface of the NiCrBSi–1.5Y₂O₃ composite coating and there are more micro-cracks on its worn surface than on the NiCrBSi–1.0Y₂O₃ composite coating, and some micro-cutting grooves are produced on the worn surface. Due to the increasing brittleness phases in the NiCrBSi–1.5Y₂O₃ composite coating, there are the micro-cracks and micro-fracture in the composite coating caused by the shear force increase. The micro-cutting grooves are plough by wear debris on the worn surface and lead to increase of wear mass loss. Main wear mechanisms of the NiCrBSi–1.5Y₂O₃ composite coating are micro-fracture wear and micro-cutting wear.

As the Y₂O₃ content increases to 2.0%, many micro-cracks and micro-cutting grooves emerge on the worn surface of the composite coating (Fig. 12). The increased porosity of the composite coating causes more defects in the coating. These defects develop to micro-cracks under cyclic load, and lead to fracture of the worn surface materials which act as wear debris. The wear debris induces three-body abrasive wear, so the micro-cutting grooves increase in Fig. 12. As a result, micro-fracture wear and micro-cutting wear of the NiCrBSi–2.0Y₂O₃ composite coating increase compared with the NiCrBSi–1.5Y₂O₃ composite coating.

![Fig. 10 SEM image showing worn surface morphology (a) and EDAX spectrum (b) of NiCrBSi–1.0Y₂O₃ composite coating](image-url)
Fig. 11 SEM image showing worn surface morphology of NiCrBSi–1.5Y2O3 composite coating

Fig. 12 SEM image showing worn surface morphology of NiCrBSi–2.0Y2O3 composite coating

It can be concluded that the NiCrBSi–0.5Y2O3 composite coating presents excellent tribological properties, whose friction coefficient is 0.175 which is 37% of that of the pure NiCrBSi coating. The wear mass loss of the composite coating is 1.2 mg, which is reduced by 43% compared with the pure NiCrBSi coating. The decreased friction coefficient of the composite coating can be attributed to the solid lubrication effect of the oxide film on the worn surface.

3.3 Effects of load on tribological properties of NiCrBSi–Y2O3 composite coatings

The effects of load on tribological properties of the NiCrBSi–0.5Y2O3 composite coating are researched in consideration of its excellent tribological properties. Figure 13 shows the friction coefficients and wear mass losses of the NiCrBSi–0.5Y2O3 composite coating as a function of load. Its friction coefficients take on a slight decrease trend as the load increases, which is in the range of 0.173 and 0.18. The wear mass losses of the composite coating increase with the increasing load.

Under at the loads of 6–10 N, the composite coating suffers from slight wear and the wear mass losses are between 0.7 mg and 1.2 mg. As the load exceeds 10 N, the mass wear loss increases to 2.7 mg, indicating severe wear of the composite coating.

The worn surface of the NiCrBSi–0.5Y2O3 composite coating under the load of 6 N is shown in Fig. 14 with its EDAX spectrum. It can be observed that some slight micro-cutting grooves develop on the worn
surface accompanied with a little oxide (Fig. 14(a)). The plough action of the wear debris is slight at low load due to the small depth of indention of the wear debris. The worn surface is composed of 4.96O, 3.44Si, 17.55Cr, 6.92Fe and 67.13Ni (Fig. 14(b)). It can be found that element O is much less under load of 6 N than at the load of 10 N (9.17%), which indicates less oxide at low load than at high load. This is because the friction oxidation reaction caused by friction heat is reduced at a low load. The wear mechanisms of the NiCrBSi−Y2O3 composite coating at a low load are adhesive wear and slight micro-cutting wear.

Figure 15 shows the worn surface and EDAX spectrum of the NiCrBSi−0.5Y2O3 composite coating at high load of 12 N. The worn surface is covered by the oxide film with the chemical composition of 1.51C, 11.23O, 3.70Si, 16.94Cr, 6.89Fe and 59.73Ni. The worn surface is severely oxidized with O content of 11.23% due to the severe friction heat in the shear process as a result of high contact stress at high loads. In addition, many plough grooves can be found in Fig. 15(a), indicating severe micro-cutting wear of the composite coating at high loads. It shows that the main wear mechanisms of the NiCrBSi−0.5Y2O3 composite coatings at high loads are adhesive wear and severe micro-cutting wear.

4 Conclusions

1) The plasma sprayed NiCrBSi−Y2O3 composite coatings are mainly composed of γ-Ni, CrB, Cr7C3 and Y2O3. With addition of Y2O3, hard phases such as CrB, Cr7C3 emerge in the composite coating, the density of the composite coatings also increases. The porosity of the NiCrBSi−Y2O3 composite coatings is less than 1%, much less than that of the pure NiCrBSi coating. The microhardness of the NiCrBSi−0.5Y2O3 composite coatings is about 1.2 times that of the pure NiCrBSi coating.

2) The NiCrBSi−0.5Y2O3 composite coating presents excellent tribological properties, whose friction coefficient is 0.175, 37% of the pure NiCrBSi coating. The wear mass loss of the composite coating is 1.2 mg, which is reduced by 43% compared with the pure NiCrBSi coating. The decreased friction coefficient of the composite coating can be attributed to the solid lubrication effect of the oxide film on the worn surface. At the loads of 6−10 N, the composite coating suffers from slight wear and the wear mechanisms are mainly adhesive wear accompany with slight micro-cutting wear and micro-fracture wear. As the load increases to 12 N, the wear of the composite coating becomes severe and the wear mechanisms are adhesive wear and severe micro-cutting wear.

References

[7] WANG Hong-yu, XU Xiao-jing, CHEN Kang-min, ZHANG Xue-feng, LIU Xi. Effect of La2O3 on microstructure and properties
NiCrBSi–Y\textsubscript{2}O\textsubscript{3}复合涂层的摩擦学行为与机理

蔡 滨，谭业发，谭 华，敬奇锋，张中威

解放军理工大学 野战工程学院，南京 210007

摘 要：运用等离子喷涂技术在 45 钢表面制备了 NiCrBSi–Y\textsubscript{2}O\textsubscript{3}复合涂层，研究了其微观组织和摩擦学性能。结果表明：等离子喷涂 NiCrBSi–Y\textsubscript{2}O\textsubscript{3}复合涂层主要由 γ–Ni、CrB、Cr\textsubscript{7}C\textsubscript{3}和 Y\textsubscript{2}O\textsubscript{3}等物相组成。在复合涂层中添加适量的 Y\textsubscript{2}O\textsubscript{3}可增加 CrB 和 Cr\textsubscript{7}C\textsubscript{3}等硬质相的含量，并提高复合涂层的致密度。当 Y\textsubscript{2}O\textsubscript{3}含量（质量分数）为 0.5% 时，NiCrBSi–Y\textsubscript{2}O\textsubscript{3}复合涂层具有优异的摩擦学性能，其摩擦因数为 0.175，仅为纯 NiCrBSi 涂层的 37%；其磨损质量为 1.2 mg，比纯 NiCrBSi 涂层的降低了 43%。当载荷为 6~10 N 时，NiCrBSi–Y\textsubscript{2}O\textsubscript{3}复合涂层呈轻微磨损，其磨损机制主要为粘着磨损，并伴有轻微的微观切削和微观断裂磨损；当载荷达到 12 N 时，复合涂层产生严重磨损，其磨损机制转变为粘着磨损和严重的微观切削磨损。

关键词：等离子喷涂；复合涂层；NiCrBSi；Y\textsubscript{2}O\textsubscript{3}；摩擦；磨损

(Edited by Hua YANG)